Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Hailstorms cause billions of dollars in damage across the United States each year. Part of this cost could be reduced by increasing warning lead times. To contribute to this effort, we developed a nowcasting machine learning model that uses a 3D U-Net to produce gridded severe hail nowcasts for up to 40 min in advance. The three U-Net dimensions uniquely incorporate one temporal and two spatial dimensions. Our predictors consist of a combination of output from the National Severe Storms Laboratory Warn-on-Forecast System (WoFS) numerical weather prediction ensemble and remote sensing observations from Vaisala’s National Lightning Detection Network (NLDN). Ground truth for prediction was derived from the maximum expected size of hail calculated from the gridded NEXRAD WSR-88D radar (GridRad) dataset. Our U-Net was evaluated by comparing its test set performance against rigorous hail nowcasting baselines. These baselines included WoFS ensemble Hail and Cloud Growth Model (HAILCAST) and a logistic regression model trained on WoFS 2–5-km updraft helicity. The 3D U-Net outperformed both these baselines for all forecast period time steps. Its predictions yielded a neighborhood maximum critical success index (max CSI) of ∼0.48 and ∼0.30 at forecast minutes 20 and 40, respectively. These max CSIs exceeded the ensemble HAILCAST max CSIs by as much as ∼0.35. The NLDN observations were found to increase the U-Net performance by more than a factor of 4 at some time steps. This system has shown success when nowcasting hail during complex severe weather events, and if used in an operational environment, may prove valuable.more » « less
-
Abstract Many of our generation’s most pressing environmental science problems are wicked problems, which means they cannot be cleanly isolated and solved with a single ‘correct’ answer (e.g., Rittel 1973; Wirz 2021). The NSF AI Institute for Research on Trustworthy AI in Weather, Climate, and Coastal Oceanography (AI2ES) seeks to address such problems by developing synergistic approaches with a team of scientists from three disciplines: environmental science (including atmospheric, ocean, and other physical sciences), AI, and social science including risk communication. As part of our work, we developed a novel approach to summer school, held from June 27-30, 2022. The goal of this summer school was to teach a new generation of environmental scientists how to cross disciplines and develop approaches that integrate all three disciplinary perspectives and approaches in order to solve environmental science problems. In addition to a lecture series that focused on the synthesis of AI, environmental science, and risk communication, this year’s summer school included a unique Trust-a-thon component where participants gained hands-on experience applying both risk communication and explainable AI techniques to pre-trained ML models. We had 677 participants from 63 countries register and attend online. Lecture topics included trust and trustworthiness (Day 1), explainability and interpretability (Day 2), data and workflows (Day 3), and uncertainty quantification (Day 4). For the Trust-a-thon we developed challenge problems for three different application domains: (1) severe storms, (2) tropical cyclones, and (3) space weather. Each domain had associated user persona to guide user-centered development.more » « less
-
Abstract A primary goal of the National Oceanic and Atmospheric Administration Warn-on-Forecast (WoF) project is to provide rapidly updating probabilistic guidance to human forecasters for short-term (e.g., 0–3 h) severe weather forecasts. Postprocessing is required to maximize the usefulness of probabilistic guidance from an ensemble of convection-allowing model forecasts. Machine learning (ML) models have become popular methods for postprocessing severe weather guidance since they can leverage numerous variables to discover useful patterns in complex datasets. In this study, we develop and evaluate a series of ML models to produce calibrated, probabilistic severe weather guidance from WoF System (WoFS) output. Our dataset includes WoFS ensemble forecasts available every 5 min out to 150 min of lead time from the 2017–19 NOAA Hazardous Weather Testbed Spring Forecasting Experiments (81 dates). Using a novel ensemble storm-track identification method, we extracted three sets of predictors from the WoFS forecasts: intrastorm state variables, near-storm environment variables, and morphological attributes of the ensemble storm tracks. We then trained random forests, gradient-boosted trees, and logistic regression algorithms to predict which WoFS 30-min ensemble storm tracks will overlap a tornado, severe hail, and/or severe wind report. To provide rigorous baselines against which to evaluate the skill of the ML models, we extracted the ensemble probabilities of hazard-relevant WoFS variables exceeding tuned thresholds from each ensemble storm track. The three ML algorithms discriminated well for all three hazards and produced more reliable probabilities than the baseline predictions. Overall, the results suggest that ML-based postprocessing of dynamical ensemble output can improve short-term, storm-scale severe weather probabilistic guidance.more » « less
-
Abstract With increasing interest in explaining machine learning (ML) models, this paper synthesizes many topics related to ML explainability. We distinguish explainability from interpretability, local from global explainability, and feature importance versus feature relevance. We demonstrate and visualize different explanation methods, how to interpret them, and provide a complete Python package (scikit-explain) to allow future researchers and model developers to explore these explainability methods. The explainability methods include Shapley additive explanations (SHAP), Shapley additive global explanation (SAGE), and accumulated local effects (ALE). Our focus is primarily on Shapley-based techniques, which serve as a unifying framework for various existing methods to enhance model explainability. For example, SHAP unifies methods like local interpretable model-agnostic explanations (LIME) and tree interpreter for local explainability, while SAGE unifies the different variations of permutation importance for global explainability. We provide a short tutorial for explaining ML models using three disparate datasets: a convection-allowing model dataset for severe weather prediction, a nowcasting dataset for subfreezing road surface prediction, and satellite-based data for lightning prediction. In addition, we showcase the adverse effects that correlated features can have on the explainability of a model. Finally, we demonstrate the notion of evaluating model impacts of feature groups instead of individual features. Evaluating the feature groups mitigates the impacts of feature correlations and can provide a more holistic understanding of the model. All code, models, and data used in this study are freely available to accelerate the adoption of machine learning explainability in the atmospheric and other environmental sciences.more » « less
-
Abstract We present an overview of recent work on using artificial intelligence (AI)/machine learning (ML) techniques for forecasting convective weather and its associated hazards, including tornadoes, hail, wind, and lightning. These high-impact phenomena globally cause both massive property damage and loss of life, yet they are very challenging to forecast. Given the recent explosion in developing ML techniques across the weather spectrum and the fact that the skillful prediction of convective weather has immediate societal benefits, we present a thorough review of the current state of the art in AI and ML techniques for convective hazards. Our review includes both traditional approaches, including support vector machines and decision trees, as well as deep learning approaches. We highlight the challenges in developing ML approaches to forecast these phenomena across a variety of spatial and temporal scales. We end with a discussion of promising areas of future work for ML for convective weather, including a discussion of the need to create trustworthy AI forecasts that can be used for forecasters in real time and the need for active cross-sector collaboration on testbeds to validate ML methods in operational situations. Significance StatementWe provide an overview of recent machine learning research in predicting hazards from thunderstorms, specifically looking at lightning, wind, hail, and tornadoes. These hazards kill people worldwide and also destroy property and livestock. Improving the prediction of these events in both the local space as well as globally can save lives and property. By providing this review, we aim to spur additional research into developing machine learning approaches for convective hazard prediction.more » « less
An official website of the United States government
